Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study

نویسندگان

  • Sonja Endres
  • Luisa Galgani
  • Ulf Riebesell
  • Kai-Georg Schulz
  • Anja Engel
چکیده

Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5-10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study

Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial...

متن کامل

Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study

The effect of elevated seawater carbon dioxide (CO2) on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA). A pCO2 range of 175– 1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard). The activity of natural extracellular enzy...

متن کامل

Implications of elevated CO 2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm e...

متن کامل

The Influence of CO2 Enrichment on Net Photosynthesis of Seagrass Zostera marina in a Brackish Water Environment

Seagrasses are distributed across the globe and their communities may play key roles in the coastal ecosystems. Seagrass meadows are expected to benefit from the increased carbon availability which might be used in photosynthesis in a future high CO2 world. The main aim of this study was to examine the effect of elevated pCO2 on the net photosynthesis of seagrass Zostera marina in a brackish wa...

متن کامل

Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subtropical North Atlantic

Citation: Hopwood MJ, Riebesell U, Arístegui J, Ludwig A, Achterberg EP and Hernández N (2018) Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subtropical North Atlantic. Front. Mar. Sci. 5:105. doi: 10.3389/fmars.2018.00105 Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014